Academic Course Description

BHARATH UNIVERSITY

Faculty of SCIENCE AND HUMANITIES

Department of Electronics and Communication Engineering
BPH101- ENGINEERING PHYSICS I
FIRST Semester, 2017-18 (ODD Semester)

Course (catalog) description

This course is to understand the impact of Crystal Physics. Learn the Properties of Elasticity and Heat transfer. Acquire Knowledge on Quantum Physics. Understand the concepts of Acoustics & Ultrasonic's and its application understand the concepts on Laser & Fiber Optics and its application.

Compulsory/Elective course: Compulsory course

Credit & Contact hours: 3 & 45

Course Coordinator : Dr. Sree Latha

Instructors :

Name of the instructor	Class	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Dr. Sree Latha	First year	First year Block			12.45am-1.15pm

Relationship to other courses:

Pre –requisites :+2 level Physics

Assumed knowledge : The students will have a physics and mathematics background obtained at a high school

(or equivalent) level.

Following courses : BPH201 – ENGINEERING PHYSICS II

Syllabus Contents

UNIT I: CRYSTAL PHYSICS:

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

9

UNIT II: PROPERTIES OF MATTER AND THERMAL PHYSICS:

Elasticity-Hooke"s law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson"s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young"s modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity- Newton"s law of cooling - Linear heat flow – Lee"s disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III: QUANTUM PHYSICS:

9

9

Black body radiation – Planck"s theory (derivation) – Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger"s wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV: ACOUSTICS AND ULTRASONICS:

9

Classification of Sound- decibel- Weber–Fechner law – Sabine"s formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V: PHOTONICS AND FIBRE OPTICS:

9

Spontaneous and stimulated emission- Population inversion -Einstein"s A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homojunction & heterojunction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL NO OF PERIODS: 45 HOURS

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009.

Computer usage: Yes

Professional component

Test Schedule

General - 0%

Basic Sciences - 100%

Engineering sciences & Technical arts - 0%

Professional subject - 0%

Broad area: photonics and fiber optics, Acoustics and ultrasonics and Properties of matter and thermal physics

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 3 rd week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October4 th week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology. This course	Correlates to program outcome		
emphasizes:	Н	M	L
To understand the impact of Crystal Physics.	a,j	g	
Learn the Properties of Elasticity and Heat transfer.	С	e,i	b,k
Acquire Knowledge on Quantum Physics.		c,f	a,g
Understand the concepts of Acoustics & Ultrasonic's and its application	а	С	j
Understand the concepts on Laser & Fibre Optics and its application.			b,c,k

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter			
Unit -I : Cr	Unit -I : Crystal Physics					
1.	Introduction Lattice – Unit cell – Bravais lattice – Lattice planes	No				
2.	Miller indices – d spacing in cubic lattice	Yes				
3.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC	Yes				
4.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for BCC	Yes				
5.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for FCC	Yes	[T1] Chapter -1,			
6.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for HCP	Yes				
7.	Crystal growth techniques –solution,	No				
8.	Crystal growth techniques – melt (Bridgman and Czochralski)	No				
9.	Crystal growth techniques vapour growth techniques (qualitative)	No				
Unit- II : Pr	operties Of Matter And Thermal Physics		1			
10.	Introduction Elasticity-Hooke"s law - Relationship between three modulii of elasticity	No				
11.	stress -strain diagram – Poisson"s ratio	No				
12.	Factors affecting elasticity –Bending moment	No				
13.	Depression of a cantilever –Young"s modulus by uniform bending ,I-shaped girders	Yes	[T1] Chapter -2			
14.	Modes of heat transfer- thermal conductivity-	No				
15.	Newton"s law of cooling	Yes				
16.	Linear heat flow – Lee"s disc method	Yes	1			
17.	Radial heat flow – Rubber tube method	Yes	-			
18.	conduction through compound media (series and parallel)	No				
Unit -III Q	Unit -III Quantum Physics					
19.	Introduction -Black body radiation Compatible et	No				

20.	Planck"s theory (derivation)	Yes	
21.	Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory	Yes	
22.	Theory and experimental verification— G.P Thomson experiment	No	[T1]Chapter-3
23.	Schrödinger"s wave equation – Time independent equations	Yes	
24.	Schrödinger"s wave equation –time dependent equations	Yes	
25.	Physical significance of wave function – Particle in a one dimensional box	Yes	
26.	- Electron microscope - Scanning electron microscope	No	
27.	Transmission electron microscope	No	
Unit –IV- A	coustics And Ultrasonics		
28.	Introduction Classification of Sound- decibel- Weber– Fechner law	No	[T1]Chapter-5,6
29.	Sabine"s formula-	Yes	
30.	derivation using growth and decay method	Yes	
31.	Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies.	No	
32.	Production of ultrasonics by magnetostriction	No	
33.	Production of ultrasonics by piezoelectric methods	No	
34.	acoustic grating -Non Destructive Testing	No	
35.	pulse echo system through transmission and reflection modes - A,B and C – scan displays	No	
36.	Medical applications – Sonogram.	No	
Unit-V Pho	otonics And Fibre Optics		
37.	Introduction-Spontaneous and stimulated emission-Population inversion	No	
38.	-Einstein"s A and B coefficients - derivation.	Yes	
39.	Types of lasers – Nd:YAG, CO2	No	
40.	Semiconductor lasers (homojunction & heterojunction	No	
41.	Industrial and Medical Applications	No	[T1] Chapter 7,8
42.	Principle and propagation of light in optical fibres –	Yes	

	Numerical aperture and Acceptance angle	
43.	Types of optical fibres (material, refractive index, mode) attenuation, dispersion, bending	No
44.	Fibre Optical Communication system (Block diagram)	No
45.	Active and passive fibre sensors- Endoscope	No

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and brainstorming skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation	Strategies
-------------------	------------

Cycle Test – I - 5%

Cycle Test – II - 5%

Model Test - 10%

Assignments/Seminar/online test/quiz - 5%

Attendance - 5%

Final exam - 70%

Prepared by: Dr Sree Latha, Professor, Department of Physics Dated:

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering
- b) An ability to design and conduct experiments, as well as to analyze and interpret data
- An ability to design a hardware and software system, component, or process to meet desired needs
 within realistic constraints such as economic, environmental, social, political, ethical, health and safety,
 manufacturability, and sustainability
- d) An ability to function on multidisciplinary teams
- e) An ability to identify, formulate, and solve engineering problems
- f) An understanding of professional and ethical responsibility
- g) An ability to communicate effectively
- h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i) A recognition of the need for, and an ability to engage in life-long learning
- i) A knowledge of contemporary issues
- k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Dr. Sree Latha	

Course Coordinator HOD/ECE